Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.

نویسندگان

  • H Zhao
  • D J Eide
چکیده

Zinc ion homeostasis in Saccharomyces cerevisiae is controlled primarily through the transcriptional regulation of zinc uptake systems in response to intracellular zinc levels. A high-affinity uptake system is encoded by the ZRT1 gene, and its expression is induced more than 30-fold in zinc-limited cells. A low-affinity transporter is encoded by the ZRT2 gene, and this system is also regulated by zinc. We used a genetic approach to isolate mutants whose ZRT1 expression is no longer repressed in zinc-replete cells, and a new gene, ZAP1, was identified. ZAP1 encodes a 93-kDa protein with sequence similarity to transcriptional activators; the C-terminal 174 amino acids contains five C2H2 zinc finger domains, and the N terminus (residues 1 to 706) has two potential acidic activation domains. The N-terminal region also contains 12% histidine and cysteine residues. The mutant allele isolated, ZAP1-1up, is semidominant and caused high-level expression of ZRT1 and ZRT2 in both zinc-limited and zinc-replete cells. This phenotype is the result of a mutation that substitutes a serine for a cysteine residue in the N-terminal region. A zap1 deletion mutant grew well on zinc-replete media but poorly on zinc-limiting media. This mutant had low-level ZRT1 and ZRT2 expression in zinc-limited as well as zinc-replete cells. These data indicate that Zap1p plays a central role in zinc ion homeostasis by regulating transcription of the zinc uptake system genes in response to zinc. Finally, we present evidence that Zap1p regulates transcription of its own promoter in response to zinc through a positive autoregulatory mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the Saccharomyces cerevisiae EKI1-encoded ethanolamine kinase by zinc depletion.

Ethanolamine kinase catalyzes the committed step in the synthesis of phosphatidylethanolamine via the CDP-ethanolamine branch of the Kennedy pathway. Regulation of the EKI1-encoded ethanolamine kinase by the essential nutrient zinc was examined in Saccharomyces cerevisiae. The level of ethanolamine kinase activity increased when zinc was depleted from the growth medium. This regulation correlat...

متن کامل

Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.

Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting ...

متن کامل

Regulation of the PIS1-encoded phosphatidylinositol synthase in Saccharomyces cerevisiae by zinc.

In the yeast Saccharomyces cerevisiae, the mineral zinc is essential for growth and metabolism. Depletion of zinc from the growth medium of wild type cells results in changes in phospholipid metabolism, including an increase in phosphatidylinositol content (Iwanyshyn, W. M., Han, G.-S., and Carman, G. M. (2004) J. Biol. Chem. 279, 21976-21983). We examined the effects of zinc depletion on the r...

متن کامل

Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast.

In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322-330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficie...

متن کامل

Involvement of the pleiotropic drug resistance response, protein kinase C signaling, and altered zinc homeostasis in resistance of Saccharomyces cerevisiae to diclofenac.

Diclofenac is a widely used analgesic drug that can cause serious adverse drug reactions. We used Saccharomyces cerevisiae as a model eukaryote with which to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Although most yeast cells died during the initial diclofenac treatment, some survived and started growing again. Microarray analysis of the adapted cells identified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 1997